## Outline



Given: cryptographic algorithm

- Request: "efficient" hardware design
- This lecture about Efficiency
- Later this week: cost of side-channel resistance




## Embedded Security

## NEED BOTH

- Efficient, light-weight Implementation
- Within power, area, timing budgets
- Public key: 1024 bits RSA on 8 bit $\mu \mathrm{C}$ and $100 \mu \mathrm{~W}$
- Public key on a passive RFID tag
- Trustworthy implementation
- Resistant to attacks

- Active attacks: probing, power glitches, JTAG scan chain
- Passive attacks: side channel attacks, including power, timing and electromagnetic leaks

KUL- Cosic
Summer School- 8 Šibenik Croatia, June 2014



| Area <br> - ASIC = Application Specific Integrated Circuit - Gate count <br> - Unit $=$ NAND gate $=4$ transistors <br> - FPGA = Field Programmable Gate Area - Unit is LUT, flip-flops, see lecture Nele <br> - Embedded micro-controllers <br> - Memory size = program size + data size |
| :---: |




## Real-time, throughput, latency

- Throughput = associated with application
- Amount of data processed per time unit
- Video: Gbits/sec, Internet: Gpackets/sec
- Real-time sample rate: HW has to work as fast as application dictates
- Latency = associated with application
- Delay from input to output
- Measure of reaction speed or turn-around time
- High throughput and low latency don't go together

| KUL- CoSIC | Summer School- 14 | Šibenik Croatia, June 2014 |
| :--- | :--- | :--- |

## Clock Frequency

Clock frequency is a property of the hardware! $=1 / \mathrm{max}$ (longest combinatorial path)
$=1 /$ (critical path)

- There is only one AES 128 algorithm
- There are multiple AES hardware implementation options.
- Extremely high throughput (Radar or fiber optics)
- One operator (= hardware unit, e.g. adder, shifter, register)
- for each operation (= algorithmic, e.g. addition, multiplication, delay)
$\Rightarrow$ clock frequency = sample frequency
- Basic operatIONS:
- Byte-sub: non-linear operation on every byte
- Shift-row: Circular shifting of bytes in each row
- Most designs: time multiplexing
- Shift-row: Circular shifting of bytes in each row
- Mix-column: multiplying the round data with a fixed polynomial
- Add-key: XORing the round data and round key
clock frequency $\neq$ sample frequency
clock frequency
$\frac{\text { clock frequency }}{\text { sample frequency }}=$ number of clock cycles available for the job
KUL- COSIC
Summer School- 15
Šibenik Croatia, June 2014


## Example: AES variations

|  |  |  |
| :--- | :--- | :--- |
| KUL- CoSIC | Summer School- 16 | Šibenik Croatia, June 2014 |



## AES: one cycle per round

- Sample frequency < clock frequency
- Example: clock is 200 MHz , sample rate is $10 \mathrm{MHz}, 128$ bits per sample
- Requested throughput: min 1.28 Gbits/sec
- Puts HW limit: one AES in 20 clock cycles or less


## Solution:

Parallel datapath, sequential execution
KUL- COSIC $\quad$ Summer School- 18 Šibenik Croatia, June 2014



## AES compact: one SBOX

- Goal: low area
- Exercise:
- Clock is 200 MHz
- Min number of clockcycles?
- Throughput?
- Latency?
- Overhead:
- muxes
- Control logic


Summer School- 22
Šibenik Croatia, June 2014


## AES parallel = loop unrolling

- Unroll twice
- Now 6 CC
- IF same clock
- THEN
- double throughput
- latency: ?
- (overhead ignored)
= expensive


| AES unroll \& pipeline |  |  |
| :---: | :---: | :---: |
| 1 clock cycle per AES | $\triangle$ REGISTER |  |
|  | 16 SBOX |  |
| 11 data samples inpipeline |  |  |
|  | Key Addition |  |
| 200 MHz clock | $\triangle$ REGISTER |  |
|  | 16 SBOX |  |
| Throughput: ?? | Mix column |  |
|  | Key Addition |  |
| Latency: ?? |  |  |
|  | 16 SBOX |  |
|  | Shitit Row |  |
|  | ${ }_{\text {M }}^{\text {Mey }}$ M column |  |
| cosic Sme | 20. 25 | Sibenic |


Power density too high to keep junctions at low temp
$\rightarrow$ For desktops and servers it is a cooling problem
Courtesy, Intel
KUL - CoSIC Summer School- $29 \quad$ Šibenik Croatia, June 2014

## Power and Energy are not the same!

- Power = $\mathrm{P}=\mathrm{I} \times \mathrm{V}$ (current $\times$ voltage) (= Watt)
- instantaneous
- Typically checked for cooling or for peak performance
- Energy = Power $x$ execution time (= Joule)
- Battery content is expressed in Joules
- Gives idea of how much Joules to get the job done

Low power processor $=$ low energy solution !


## Heat and parallelism



| Throughput - Energy numbers |  |  |  |
| :---: | :---: | :---: | :---: |
| AES 128bit key 128bit data | Throughput | Power | Figure of Merit (Gb/s/W) |
| 0.18 mm CMOS | 3.84 Gbits/sec | 350 mW | 11 (1/1) |
| FPGA [1] | 1.32 Gbit/sec | 490 mW | 2.7 (1/4) |
| Intel ISA for AES | $32 \mathrm{Gbit/sec}$ | 95 W | 0.34 (1/33) |
| ASM StrongARM [2] | $31 \mathrm{Mbit} / \mathrm{sec}$ | 240 mW | 0.13 (1/85) |
| Asm Pentium III [3] | 648 Mbits/sec | 41.4 W | 0.015 (1/800) |
| C Emb. Sparc [4] | $133 \mathrm{Kbits} / \mathrm{sec}$ | 120 mW | 0.0011 (1/10.000) |
| Java [5] Emb. Sparc | $450 \mathrm{bits} / \mathrm{sec}$ | 120 mW | 0.0000037 (1/3.000.000) |

[1] Amphion CS5230 on Virtex2 + Xilinx Virtex2 Power Estimator
[2] Dag Arne Osvik: 544 cycles AES - ECB on StrongArm SA-1110
[3] Helger Lipmaa PIII assembly handcoded + Intel Pentium III ( 1.13 GHz ) Datasheet
[4] gcc, $1 \mathrm{~mW} / \mathrm{MHz}$ @ 120 Mhz Sparc - assumes 0.25 u CMOS
[5] Java on KVM (Sun J2ME, non-JIT) on $1 \mathrm{~mW} / \mathrm{MHz} @ 120 \mathrm{MHz}$ Sparc - assumes 0.25 u CMOS
KUL - COSIC Summer School- 33 Šibenik Croatia, June 2014

## Match between algorithm \& architecture

Close the gap:

- Dedicated HW: ASIC
- Programmable HW: FPGA
- Custom instructions, hand-
coded assembly
- Compiled code
- JAVA on virtual machine,
compiled on a real machine
KUL. cosic


## Energy power conclusions

- Low power processor is NOT low energy solution
- Power is limited
- Cooling!!
- Implanted devices only temperature $\Delta<1^{\circ} \mathrm{C}$


## DESIGN METHODS

- Energy Battery is limited
- Pace maker battery is not rechargeble

For low power/low energy

- One AAA battery is 1300 ... 5000 Joules
- How much crypto in one micro Joule ?



| 1 microJoule <br> - 11000 bits AES (ASIC) <br> - 3000 to 10 K gates area = small |  |  |
| :---: | :---: | :---: |
|  |  |  |

Example 2:Public key - Elliptic Curve Cryptography

Push for lowest energy
to fit budget of RFID

KUL- Cosic
Summer School- 40
Šibenik Croatia, June 2014


## Computation needs

- One (simple) Schnorr protocol requires one elliptic curve point multiplication (compared to two at the reader)
- One point multiplication with Montgomery ladder requires $\mathbf{N}$ point additions \& doublings ( $\mathrm{N}=$ key length)
- With modified Lopez -Dahab common Z coordinate, one point addition and point doubling requires 7 field multiplications, 4 squarings and $\mathbf{3}$ additions
One field multiplication requires 163/d clock cycles (d= digit size).
For digit size 4, 79000 cycles (should stay below 100K)

|  |  |  |
| :--- | :--- | :--- |
| KUL- CoSIC | Summer School- 42 | Šibenik Croatia, June 2014 |



## RFID co-processor prototype



- Combination full-custom - standard cells
- HW and SW co-design
- DPA Side channel resistance

KUL-cosic Šibenik Croatia, June 2014
Still to add physical security ... (i.e. side-channel and fault attack resistant)

$$
\begin{array}{lll}
\hline \text { KUL - COSIC } & \text { Summer School- 45 } & \text { Šibenik Croatia, June } 2014 \\
\hline
\end{array}
$$





## Conclusions

- Time has many faces: real-time, throughput, latency, clock frequency, critical path, ..
- Power is not same as energy !
- Energy - flexibility trade-off = orders of magnitude !
- Communication- computation trade-off !

With thanks to Nele Mentens for presenting this!!

